معيارية جودة المياه

 بقلم : كيميائية / رشا إسماعيل محمد

دبلومة كيمياء تحليلية

تمهيدي ماجستير كيمياء تحليلية

 

مقدمة:

ان مفهوم جودة المياه يعتمد فى الاساس على معايير القياس الكيميائية، الفيزيائية، البيولوجية والأشعاعية وذلك لتقييم نوعية الماء وتعيين تركيز جميع المكونات والأضافات التى تضاف إليها ، ثم مقارنة نتائج هذا التركيز مع الغرض المستخدم له هذه المياه.

والجدير بالذكر  أن الماء المقطر  يعتبر من أكثر أشكال الماء جودة ونقاوة إلا أنها ليست مناسبة لكل الأغراض الحيوية وتعتبر بيئة غير مناسبة لكثير من الكائنات الحية لذلك يتوقف قياس جودة الماء إعتمادًا على الغرض المُستخدم له فالماء الذى يستخدم في المنازل للشرب وإعداد الطعام يختلف عن الماء المُستخدم لتربية الأسماك عن الماء المستعمل لري المزروعات. في حين تتميّز مياه البحار والمحيطات بجودتها العالية بالنسبة للعديد من أنواع الاسماك، إلا أنّها غير مناسبة لبعض الكائنات الأخرى، كذلك الماء المستخدم فى الأغراض الصناعية.

العرض:

يتناول هذا المقال كيفية الوصول الى افضل معيار لقياس جودة المياه، فالماء يعتبر من أحد عناصر الحياة الرئيسية ولا يمكن أن تستمر الحياة بدون مياه. لذلك من الضرورى معرفة كيمياء وبيولوجيا المياه لإيجاد أفضل الطرق المناسبة للمعالجة والحد من تلوث المياه لجعلها مناسبة للأستخدام الشخصي أو الصناعي أو الزراعي.

معايير قياس جودة المياه

1-     المعايير الفيزيائية

  • درجة الحرارة : تؤثر درجة الحرارة بشكل مباشر على العمليات البيولوجية في الماء، حيث يؤدّي إرتفاع درجة الحرارة إلى إنخفاض تركيز الأكسجين المذاب في الماء وزيادة معدل عمليّات الأيض للكائنات الحية وتَسريع تكاثرها ، ويعتبر مِقياسا فى أنتاج الماء لبعض الأغراض الصناعية.
  • العكارة: تؤدي الأجسام العالقة التي لا تَذوب في الماء مثل الطحالب وذرات الرمال والبكتيريا إلى تُعكر لون الماء، الأمر الذي يؤدي إلى تقليل إمكانية دخول أشعة الشمس إلى التجمعات المائية وبالتالي تقليل عملية التمثيل الضوئي وتقليل تركيز الأكسجين مع زيادة تركيز ثاني أكسيد الكربون في الماء، مما يؤثر سلباً على الكائنات الحية، ويتمّ قياس تَعكّر الماء بوحدات NTU ويعتبر مقياس مهم لتقييم جوده الماء، كذلك من الخصائص الطبيعية لمياه الشرب أن يكون صافياً فالحد الأقصى للعكارة في الماء المعالج 5 وحدات.
  • لون وطعم ورائحة الماء: من المعروف أنّ الماء النقي عديم الطعم واللون والرائحة وبالتالي فإنّ وجود أيّ صفة من هذه الصفات يعني تلوّث الماء فاللون يجب أن يكون مقبولاً لا يتجاوز 50 وحدة بمقياس الكوبالت البلاتيني  والطعم أن يكون مقبولاً مستساغاً والرائحة معدومة.

2-     المعايير الكيميائية

عادةً تعتبرالمعايير الكيميائية مقياس للعناصر الكيميائية فى الماء ومنها الأملاح الذائبة فبطريقة طبيعيّة تنتج هذة الاملاح عن ذوبان الصخور أو الأملاح الموجودة في التربة، أو بطريقة غير طبيعية بفعل الإنسان من خلال إستعمال الأسمدة الكيميائية أو خلط الماء الصالح للشرب بمياه الصرف، على سبيل المثال تؤدّي زيادة نسبة النَيترات والفُوسفات في الماء إلى تكاثر الكائنات الحية النباتية بسرعة  وعلى وجه الخصوص الطحالب، مما يقلل التمثيل الضوئي للنباتات وتركيز الأُكسجين فتموت معظم الكائنات التي تعيش في الماء، كما أنّ زيادة النَيترات في ماء الشرب يؤدّي إلى إتصالها مع مادة الهيموجلوبين الموجودة في كرات الدم الحمراء وإعاقة نقل الأكسجين في الجسم.

نتناول هنا فى هذا المقال بعض المعايير الكيميائية منها مثل:

  • الأكسجين: تحتاج الكائنات التي تعيش في الماء إلى نسبة معيّنة من الأكسجين حيث يصل التركيز الأدنى للحياة في الماء إلى 4ملغم/لتر ولا تستطيع الكائنات العيش بتركيز أقلّ من هذا ، ومن الخصائص الطبيعية لماء الشرب مثلا أن يكون تركيز الأكسجين المذاب عند درجة 25 ْم 5-8 ملغم/ لتر بينما يكون تركيز ثاني أكسيد الكربون المذاب عند درجة 25 ْم 2-3 ملغم/ لتر .
  • درجة الحموضة: ويقصد به نسبة درجة حامضية أو قاعدية الماء، حيث يقاس pH في مجال 0ـ 14، وعندما تكون نسبة pH=7  فهو متعادل، أمّا إذا كانت أقلّ من 7 فهو حامضي، أما أكثر من 7 فهو قاعدي.
  • عسر الماء: يقصد بعسر الماء تركيز أيونات الكالسيوم والماغنسيوم مجتمعة في الماء، فكلّما زاد تركيز هذه الأيونات زاد عسر الماء (مانع التصبن)، بخلاف الكالسيوم والماغنسيوم توجد ايضا املاح اخرى مثل الكبريتات، الكربونات والصوديوم وغيرها. وبالتالي يعتبر زيادة الأملاح عائقا فى جودة الماء المستخدم صناعياً، فمن الخصائص الطبيعية لماء الشرب ألا يزيد تركيز الأملاح الذائبة الكلية في الماء عن500 جزء فى المليون.
  • المعادن الثقيلة: قد تتواجد بعض من المعادن الثقيلة بنسبة قليلة جدا فى الماء وهذة المعادن تؤثرعلى صحّة الإنسان سواء كانت معادن طبيعيّة ناتجة عن ذوبان الصخور أو معادن صناعية ناتجة عن الماء العادم فمن المعادن الثقيلة الرصاص، الزئبق، الزرنيخ، الكادميوم، النترات والحديد فمثلا لا يجوز أن تزيد نسبة الرصاص عن 10 ميكروغرامات لكل لتر ويستخدم فى الكشف عن وجود هذة المعادن الثقيلة جهاز الامتصاص الذرى.
  • الفحوص الكيميائية العضوية: هي إختبارات طارئة لا يتم إجراؤها إلا في حالة الشك بإختلاط الماء ببعض المُلوثات كالمُبيدات الحشرية، المواد النِفطية والمُخلفات الصناعية.

3-     المعايير البيولوجية:

يقوم مبدأ المِعيار البيولوجي على قياس نسبة الكائنات الحية وخصوصاً اللافقاريات التي تعتبر أكثر الكائنات حساسية ضد التلوث التي تعيش وتتكاثر داخل الوسط المائي حيث يجب أن يتراوح المُعامل البيولوجى بين 0 و10، وكلّما زادت القيمة من ستة إلى عشرة كان ذلك مِعياراً مرتفع على جودة الماء.

  • قياس متطلب الاكسجين الحيوى على مدار خمسة أيام ((BOD5 : هو معيار يكثر إستخدامه غالباً في قياس تلوّث الماء ويقيس المتطَلب البيولوجي للأكسجين خلال مدّة زمنية لا تتجاوز الخمسة أيام حيث يُحسب كمية الأكسجين المطلوبة لتنفس البكتيريا للقيام بتحلل المواد العضوية الموجودة في الماء؛ ويكون ذلك تحت تأثير درجة حرارة º20 م وتٌقاس وحدتها في الظلام بـ مجم / لتر.
  • فحوص جرثومية: تهدف الفحوص الجرثومية إلى التأكّد من خُلو الماء من بعض الأنواع البكتيرية المسببة للأمراض كالبكتيريا الشريكية القولونية، والبكتيريا القولونية البرازية.

4-     المعايير الإشعاعية :

يقصد بها المواد المشعة، والتي تؤدي إلى تلوث الماء إشعاعياً ، وقد يكون مصدر هذه المواد المشعة ذوبان الصخور أو رمي مُخلفات المواد المشعة الناتجة عن المَصانع أو المُستشفيات أو المُختبرات في الماء، ويعتبر هذا الأمر خطيراً جداً لتأثيره على مبنى المادة الوراثية للإنسان  DNA وتسبب له حدوث طفرات فيها أو الإصابة بمرض السرطان مثل: عنصرى الرادون والراديوم.

من خلال هذة المعايير وقياسها بدقة داخل مختبرات علمية وتحت ايدى متخصصون يمكن الوصول لأفضل جودة للماء وذلك بمتابعة عملية فحص انتاج ومعالجة المياه بشكل دورى بِجمع عينات الفحص و بأخذها مباشرة من مصادرها سواء من محطات التنقية السطحية او من  الآبار الجوفية او من أماكن التخزين المسموح بها ، مع مراعاة إتباع إرشادات الأخصائيين في هذا المجال، وفي حالة إجراء الفحوص لأغراض قانونية، فيقوم المُختبر بجمع العينات، لضمان المِصداقية وعدم التلاعب، وكذلك الأمر بالنسبة للفحوص المتخصصة الدقيقة، كاختبارات الرادون وكبريتيد الهيدروجين, وقد يستخدم فحص العينات لأثبات كفائة وحدات المعالجة للماء المستخدمة فى الأغراض الصناعية والحيوية بشكل عام .

الخلاصة:

بناءًا على ما سبق نجد أن الفحص والتحليل الدورى للماء سواء المستخدم فى الأغراض الشخصية الحياتية (الشرب –الطعام –الأستحمام) أو الأغراض الزراعية أو الأغراض الصناعية (صناعة الأغذية –الأدوية –وغيرها) لها اهميتها قبل المعالجة لتحديد طرق المعالجة اللازمة وبذلك نصل لأفضل معيار لقياس جودة الماء على حسب أستخدامها.

لذلك بإذن الله فى المقالات القادمة سوف نتطرق إلى بعض جوانب أساليب التحليل للماء وطرق المعالجة لها.

 

المراجع:

 

 

 

الإستفادة من الروبة الناتجة عن عمليات تنقية المياه في معالجة مياه الصرف الصناعي

بقلم / أحمد محمد هشام

ماجستير كيمياء تحليلية

كبير مراجعين لنظم إدارة الجودة والبيئة والسلامة والصحة المهنية

Ahmedhasham83@gmail.com

مقدمة:

في عصر التكنولوجيا والأقمار الصناعية لا تزال بعض المشكلات تشكل تحدياً كبيراً علي الصعيدين البيئي والإقتصادي , من هذه المشكلات مشكلة التخلص من مخلفات عمليات معالجة المياه. ويعد الترويب والتنديف أحد أكثر الطرق شيوعًا في عمليات معالجة المياه بسبب بساطتها في التطبيق ، وفعاليتها وغير مكلفة من الناحية الإقتصادية ولكن العيب الرئيسي في تطبيق تقنيات الترويب والتنديف هو التخلص من المواد الصلبة الناتجة عن هذه العملية والتي تعرف ب”الروبة”. ويعتبر التخلص من الروبة   الناتجة عن عمليات معالجة المياه المعضلة الكبيرة لما تحمله من معادن ثقيلة وممرضات وبقايا مواد الترويب1.

الجدير بالذكر أن هذه الروبة تحتوي علي 40-50% من الشبة الغير مستخدمة من الجرعات الأولية المستخدمة في عملية المعالجة مما يجعل التفكير في إعادة إستخدامها أمر حتمي 2.

علي صعيد أخر تشكل مياه الصرف الصناعي بما تحمله من أصباغ معضلة أخري حيث أنها تحتاج إلي عمليات معقدة ومكلفة لمعالجتها. الأصباغ هي مواد كيميائية ملونة ، تتكون غالبا من مركبات عضوية اروماتية (تحتوي في تركيبها علي حلقة بنزين) ملونة (كما يتضح في الرسم التوضيحي رقم 1 – مثال للتركيب الكيميائي لأحد الصبغات) . يتم استخدام الأصباغ الصناعية بشكل متزايد في صناعات النسيج والصباغة بسبب سهولة تطبيقها وفعاليتها من حيث التكلفة، وثبات عالٍ ضد تأثير الضوء ودرجة الحرارة والمنظفات. يتم تصنيع أكثر من 10000 صبغة مختلفة كيميائيا. يقدر الإنتاج العالمي للأصباغ  بحوالي  70 الف طن سنويًا3.

معظم الأصباغ مركبات ضارة للإنسان والحيوان بسبب سميتها وتأثيرها السلبي علي الخلايا  حيث يعتقد بأن بعضها قد يصل تاثيره الي ان يحدث طفرات جينية وغيرها من الخصائص التي تؤثر سلبًا على صحة الإنسان . تصنف لجنة التجارة الدولية الأمريكية الأصباغ إلى 12 نوعا. من بين هذه الأصباغ التفاعلية ، تستخدم الأصباغ الحمضية والأصباغ المباشرة بشكل شائع ، والتي تتواجد بشكل واضح في معظم مياه الصرف الصناعي الناشئة عن صناعات النسيج4.

العرض:

تتوفر العديد من الطرق الفيزيائية والكيميائية والبيولوجية لمعالجة المخلفات السائلة حيث قام غويندي وفريق عمله بإجراء دراسات لإزالة الأصباغ الحمضية الحمراء باستخدام مزيج من عمليات الترويب والامتزاز حيث  كشفت نتائجهم أن تطبيق عملية الترويب قبل الامتزاز كان فعالاً بشكل واضح لإزالة اللون. إذ استخدمت الشبة (كبريتات الألمونيوم )وكلوريد الحديديك كمخثرات للصبغة لترسيبها ، وتم استخدام الكربون المنشط الحبيبي (GAC) كعامل امتزاز لإزالة ما تبقي من لون 5.

ومن الدراسات الجيدة التي قام بها دانشفار وفريق عمله إجراء تجارب باستخدام الحفز الضوئيOptical catalysis  باستخدام أكسيد الزنك لتحلل صبغة الحمض الأحمر 14 (AR 14) في وجود الضوء الفوق بنفسجي UV. ولقد أشارت نتائج بحثهم  إلى أنه يمكن استخدام عملية UV / ZnO بكفاءة لتكسير صبغة (AR14). كما قاموا بدراسات حول التحلل الحيوي الهوائي لصبغة azo Acid Red 151 (AR 151) بواسطة استخدام مرشح بيولوجي ذو تدفق دفعي متسلسل. وتشير النتائج إلى إزالة لون تصل إلى 99 ٪ من تركيز أولي 50 ملغم / لتر من 6AR 151.

وأيضا ما قام به بهادير وفريق عمله لدراسة إمكانية إزالة صبغة النسيج وإزالة أيونات المعادن باستخدام مخاليط ثنائية من Acid Blue 29 و Reactive Red 2 و Acid Red 97 وتطبيق أنودات حديدية ومحلول الكتروليت من كبريتات الصوديوم في مفاعل كهروكيميائي. اعتمادًا على ظروف التفاعل الكهروكيميائي ، لوحظ أن النسب المئوية لإزالة الصبغة وإزالة أيون المعادن تتراوح ما بين 70.6 –   %96.7  لإزالة الأصباغ النسيجية و 64.9 – 100 ٪ لإزالة أيونات الحديد7.

بينما قام فورلان وفريق عمله بدراسة استخدام المخلفات الزراعية في إزالة الأصباغ التفاعلية مثل (Reactive Black 5 RB 5) و (Reactive Orange 16 RO 16) من خلال معالجة تجمع بين تقنيات الترويب والامتزاز. حيث تم استخدام الكربون المنشط المستخلص من قشر جوز الهند كعامل إمتزاز وكلوريد الألومنيوم كمادة ترويب. تم العثور على كفاءة إزالة ما يقرب من 90 ٪ ل RB 5 و و84 % 8 RO 16.

من الدراسات المذكورة أعلاه ، يمكن أن نستنتج أن تطبيق عمليات مثل الامتزاز ، والحفز الضوئي ، والترشيح الحيوي أثبتت نجاحها في علاج المخلفات السائلة الملونة ، وتبين أن الإزالة تصل إلى 100 ٪. ولكن قد لا يوفر تطبيق هذه الطرق حلاً مجديًا اقتصاديًا للصناعات الصغيرة والمتوسطة بسبب قيود مثل ارتفاع التكاليف والمشاكل في الحفاظ على المعايير التشغيلية للمعالجة. لذلك أجريت بعض الدراسات باستخدام تقنية الترويب مع روبة محطات معالجة المياه كمروب.  حيث تنتج محطات معالجة المياه كميات كبيرة من الروبة أثناء عمليات الترويب مما يشكل تحديًا في عملية التخلص من هذه الروبة. علي صعيد أخر يمكن استغلال هذه الروبة لتحقيق توفير كبير محتمل في جرعة المواد الكيماوية المروبة من خلال استرداد عوامل الترويب من الروبة  أو إعادة استخدام الروبة  نفسها في المعالجة2.

 

تركز الأبحاث الحالية على إعادة استخدام روبة محطات تنقية مياه الشرب لمعالجة مياه الصرف الصناعي المحمل بالصبغات. نظراً لأن مياه الصرف الصناعي من المصابغ تلوث المسطحات المائية القريبة.  وذلك هناك حاجة ماسة لتطوير طرق منخفضة التكلفة لمعالجة مياه الصرف الصناعي خاصة الناتج عن أنشطة المصابغ  حيث أن الطرق المتبعة عادةً مكلفة والتي لا يمكن أن توفر خيار معالجة اقتصادية لمثل هذه الصناعات الصغيرة والمتوسطة2.

لذلك يمكن أن يكون استخدام مواد منخفضة التكلفة مثل روبة محطات معالجة المياه للمعالجة المسبقة لمياه الصرف الصناعي خيارًا ممكنًا لتحقيق النتائج المرجوة للناتج النهائي من المياه المعالجة. ولقد استخدمت بعض الدراسات  هذه الروبة  لمعالجة صرف محمل بأصباغ  Acid Red 94, Acid Yellow 1, Direct Green 26, Reactive Blue 21 لأن هذه كانت تستخدم بشكل متكرر في وحدات الصباغة. تحققت أقصى إزالة لـ   Acid Red 94  (41.5 %) ، Acid Yellow 1 (27 %) ، Direct Green 26  (43.5 %) و Reactive Blue 21(26.2%)2.

رسم توضيحي 2شكل يوضح فعالية الروبة المعاد استخدامها مقارنة كمروبات أخري في إزالة ملوثات مياه الصرف

تم التوصل لطرق لاستعادة مواد الترويب من الروبة الناتجة عن عمليات معالجة المياه باستخدام طرق مثل المعاملة بالأحماض والقلويات وتبادل الأيونات ( ion exchange ) والفصل بالأغشية( membranes )مما يقلل من تكاليف تشغيل محطة معالجة المياه. أجريت دراسات لاستعادة مواد الترويب باستخدام حامض الكبريتيك وحمض الهيدروكلوريك. وتشير النتائج إلى أن الحفاظ على الرقم الهيدروجيني منخفض يمكننا من استعادة بين 70 و 90 ٪ من مواد الترويب. في حالة الاستعادة باستخدام عملية المعاملة بالقلويات ، أجريت الدراسات باستخدام هيدروكسيد الصوديوم وهيدروكسيد الكالسيوم وأظهرت النتائج أنه يمكن إستعادة ما يصل إلى 90 ٪ عند الرقم الهيدروجيني 12 باستخدام هيدروكسيد الصوديوم. ويمكن تعزيز فعالية هذه العمليات من خلال إستخدام الأغشية ، ولكن إنسداد الأغشية بسبب الجسيمات يفرض قيودا على إستخدام هذه التقنية. أكدت الدراسات أيضًا وجود مواد قابلة للذوبان إلى جانب مادة الترويب المستعادة التي تؤثر على نوعية المياه إذا تم استخدامها لتنقية مياه الشرب. وبالتالي  تم اقتراح تطبيق المواد المروبة المسترجعة في معالجة مياه الصرف الصحي والصناعي11-9.

ومن الجدير بالذكر في هذا الصدد الدراسة القيمة التي قام شوا بدراسة إزالة الصبغة على نطاق واسع من مياه الصرف في صناعة النسيج باستخدام  روبة  الشبة المعاد تدويرها. وتبين أن  روبة  الشبة المعاد تدويرها تعتبر مادة جيدة لإزالة الأصباغ من مياه الصرف، وكذلك تقلل جرعة الشبة الحديثة بمقدار الثلث12.

ومن الأمثلة الرائعة علي ذلك هي الدراسة التي قام بها إيشيكاوا وفريق عمله  حيث استخدموا  الشبة المسترجعة باستخدام حمض الكبريتيك لمعالجة مياه الصرف الصحي. وأظهرت النتائج أن إزالة الطلب على الأكسجين الكيميائي COD والنيتروجين الكلي والفوسفور الكلي مع المروبات المسترجعة كانت ذات قسمة اقتصادية وفعالة من الناحية العملية مقارنة بكبريتات الألومنيوم التجارية أو بولي كلوريد الالومينيوم10 كما يتضح من الرسم التوضيحي رقم 2. ولمعرفة نسب الإزالة التي تحققت بكل متغير في هذه هذه الدراسة يمكن الرجوع لجدول110.

 

جدول 1 نسب الإزالة التي تحققت لملوثات مياه الصرف  بإستخدام الروبة المعاد إستخدامها مقارنة بمروبات أخري

الخلاصة :

يمكن اعتبار الروبة الناتجة عن عمليات معالجة المياه كمادة فعالة وغير مكلفة لإزالة اللون من الصرف الصناعي بالصناعات النسيجية مما يقلل من تكلفة المعالجة، يمكن استخدام هذه الروبة   بالاقتران مع طريقة معالجة أخرى مناسبة لتقليل جرعة المروبات الكيميائية.

 

المراجع:

  1. Gastaldini, A.L.G., Hengen, M.F., Gastaldini, M.C.C., Amaral, F.D., Antolini, M.B., Coletto, T.: The use of water treatment plant sludge ash as a mineral addition. Constr. Build. Mater. 94, 513–520 (2015).
  2. Shankar, Y. S., Ankur, K., Bhushan, P., & Mohan, D. (2019). Utilization of Water Treatment Plant (WTP) Sludge for Pretreatment of Dye Wastewater Using Coagulation/Flocculation. In Advances in Waste Management (pp. 107-121). Springer, Singapore.‏
  3. Fatih, D., Sengul, K.: Removal of basic red 46 dye from aqueous solution by pine tree leaves. Chem. Eng. J. 170,67–74 (2011).
  4. Uygur, A.: An Overview of Oxidative and Photooxidative Decolorisation Treatments of Textile Waste Waters. J. Soc. Dyers Col. 113, 211–217 (1997).
  5. Guendy, H.R.: Treatment and reuse of wastewater in the textile industry by means of coagulation and adsorption techniques. J. Appl. Sci. Res. 6, 964–972 (2010).
  6. Daneshvar, N., Salari, D., Khataee, A.R.: Photocatalytic degradation of azo dye acid red 14 in water on Zno as an alternative catalyst to Tio. J. Photochem. Photobiol. A: Chem. 162, 317–322 (2004).
  7. Bahadir, K.K., Kahraman, A., Cihan, G., Ayla, O.: Electrochemical decolourization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures. Chem. Eng. 173, 677–688 (2011).
  8. Furlan, F.R., Silva, L.G.D.M.D., Morgado, A.F., de Souza, A.A.U., de Souza, S.M.A.G.U.:Removal of reactive dyes from aqueous solutions using combined coagulation/flocculation and adsorption on activated carbon. Resour. Conserv. Recycl. 54, 283–290 (2010).
  9. Evuti, A.M., Lawal, M.: Recovery of coagulants from water works sludge: a review. Adv. Appl. Sci. Res. 2(6), 410–417 (2011).
  10. Ishikawa, S., Ueda, N., Okumura, Y., Iida, Y., Baba, K.: Recovery of coagulant from water supply plant sludge and its effect on clarification. J. Mater. Cycles Waste Manag. 9(2), 167–172 (2007).
  11. Joshi, S., Shrivastava, K.: Recovery of alum coagulant from water treatment plant sludge: a greener approach for water purification. Int. J. Adv. Comput. Res. 1(2), 101–103 (2011).

اﻹختبارات والفحوصات التي تجري لمياه الشرب

 بقلم / أحــمــد السـروي

إستشاري معالجة المياه والبيئة

  1.مقدمة

تجرى عادة اختبارات على أنواع المياه المختلفة ومنها مياه الشرب لتحديد محتواها من المواد العضوية وغير العضوية.  ومعرفة مدي احتوائها علي ملوثات بيولوجية من عدمه ,وتستخدم عادة أجهزة تحليلية للقياس منها ما هو اجهزة تحليل فيزيائية ومنها ما هو اجهزة تحليل كيميائية أو بيولوجية , ومن اشهر الاجهزة المستخدمة في معامل المياه جهاز قياس الطيف الضوئى، وأجهزة قياس الجهد والتوصيل الكهربى، واجهزة قياس العكارة والرقم الهيدروجيني بالإضافة إلى الطرق التقليدية مثل المعايرة الحجمية أو الطرق الوزنية.

  1. انواع التحاليل والفحوصات التى تجرى على المياه

توجد أربعة أنواع من التحاليل التى تجرى على المياه هى:

  • التحاليل الفيزيائية،
  • التحاليل الأشعاعية،
  • التحاليل الكيميائية،
  • والتحاليل البيولوجية.

ا- التحاليل الفيزيائية

  • درجة الحرارة
  • الرائحة
  • الطعم
  • اللون
  • العكارة
  • المواد الصلبة الكلية الذائبة

ب-تحاليل اشعاعية

المواد المشعة (مشتقات من فصيلة ألفا، بيتا).

ج- التحاليل الكيميائية

  • الأس الأيدروجينى.
  • التوصيل الكهربى.
  • المواد العضوية.
  • مركبات الكبريت غير العضوية (كبريتيد – كبريتات).
  • مركبات النيتروجين غير العضوية (نترات-نيتريت-أمونيا- سيانيد).
  • مركبات الفوسفور غير العضوية (فوسفات).
  • مركبات الهالوجين غير العضوية (كلور – كلوريد – فلوريد).
  • الحديد والمنجنيز
  • العناصر الثقيلة

د-التحاليل البيولوجية

  • القولونيات الكلية.
  • القولونيات الغائطية.
  • الطفيليات الأولية.
  • الطحالب والفطريات.

 

3.أنواع وطبيعة المواد التى يجرى تحليلها فى المياه

يتم تحليل المياه للكشف عن المواد العضوية والمواد غير العضوية. وتشمل المواد غير العضوية: المواد الأنيونية، والمواد الكاتيونية، والمواد المولدة للغازات.

المواد العضوية

  • الزيوت – الدهون – الشحوم.
  • الفينول.
  • المنظفات الصناعية.
  • المبيدات الحشرية.
  • المركبات العضوية المتطايرة.
  • المركبات العضوية الحامضية أو القاعدية.

المواد غير العضوية الأنيونية

  • الفوسفات.
  • الكبريتات.
  • السليكات.
  • الكبريتيد.
  • الكلوريد.
  • الفلوريد.
  • النترات.
  • النيتريت.
  • السيانيد.
  • الكربونات.

المواد غير العضوية الكاتيونية

  • الصوديوم – البوتاسيوم.
  • الكالسيوم – ماغنسيوم – باريوم.
  • العناصر الانتقالية (كروم-نحاس-حديد-منجنيز-زنك-نيكل-كوبلت).
  • العناصر الثقيلة والسامة (زئبق- فضة- رصاص- زرنيخ).

المواد غير العضوية المولدة للغازات

  • الأمونيوم.
  • الكربونات – البيكربونات.
  • الكبريتيد.
  • السيانيد.
  • النيتريت.
  1. الاجهزة المستخدمة في التحاليل والفحوصات التى تجرى على المياه

وتنقسم أجهزة التحاليل إلى أنواع متعددة تعتمد على الأساس النظرى والعملى للقياس مثل:

١. أجهزة القياس الطيفى.

٢. أجهزة القياس الكهربى.

٣. أجهزة الفصل الكروماتوجرافى.

٤. أجهزة القياس الإشعاعى.

وتستخدم هذه الأجهزة فى قياس الملوثات من عناصر فلزية أو كتيونية أو أنيونات أو مركبات عضوية.

5.تأكيد جودة تحاليل مياه الشرب

تأكيد الجودة  Quality Assurance تعرف على أنها نشاطات من خلال نظام ضبط الكفاءة وتهدف إلى الحصول على ثقة معقولة يمكن من خلالها تحقيق متطلبات الجودة. ويعطى برنامج تأكيد الجودة القدرة على الحصول على نتائج مناسبة وموثوق بها يمكن الاعتماد عليها

الفوائد التى يمكن الحصول عليها من تطبيق برنامج تأكيد الجودة:

  • تعطى المحلل القدرة على اكتشاف أية مشكلة وإرجاعها إلى مصدرها بطريقة نظامية
  • تعطى معامل التحاليل القدرة على الوصول إلى نتائج مناسبة يمكن الاعتماد عليها.
  • تزيد من ثقة المحلل فى نفسه وفى قدرته على التحليل.
  • تعمل على زيادة وتحسين سمعة المعمل.

عناصر برنامج تأكيد الجودة

يشتمل برنامج تأكيد الجودة على العناصر الآتية :

  • كفاءة تأهيل أعضاء المعمل وتدريبهم
  • توافر الأجهزة المناسبة ومعايرتها
  • صيانة الأجهزة
  • التفتيش والمراجعة للمعمل
  • استراتيجية جمع العينات وتجهيزها
  • استراتيجية تحليل العينات وتسجيل نتائجها

المراجع العلمية

  • احمد السروي , اساسيات الجودة في المختبرات البيئية,2014 , دار الكتب العلمية للنشر والتوزيع.
  • البرنامج التدريبي لمشغلي محطات تنقية مياه الشرب المستوى (ج) دليل المتدرب ,الجزء الثاني الاختبارات المعملية , مشروع دعم قطاع مياه الشرب والصرف الصحي , الوآالة الأمريكية للتنمية الدولية , 2012

 

Nitrate Removal from Drinking Water by Sodium Thiosulfate and its impact on health.

Abstract:

Nitrate is a stable and highly soluble ion with a low potential for precipitation or adsorption, nitrate is seldom present in geological formations and therefore contamination due to nitrate is mainly attributed to anthropogenic sources.

Pollution of water resources by nitrate occurs due to many reasons which has effects on environment and human health so nitrate removal from drinking water is necessary.

In this research nitrate removal is attempted by addition of sodium thiosulfate, 72% reduction in nitrate level was noticed when 1ml of 1.09% solution of sodium thiosulfate after 30 minutes of contact time. Literature was reviewed to determine the effect of sodium thiosulfate on human health.

Key Words: Nitrate removal, sodium thiosulfate, health effect.

  1. Introduction:

Nitrate is seldom present in geological formations and therefore contamination due to nitrate is mainly attributed to anthropogenic sources such as sewages and fertilizers. Microbial nitrification is the natural origin of nitrate. Through this process, ammonia is converted into nitrite and then nitrite to nitrate by the nitrosomonas genus and nitrobacter genus bacteria, respectively (Sajil Kumar et al.2014). Since nitrate has more stable oxidation state than nitrite, it is less absorbed by the aquifer matrix. Due to its mobility, it can travel long distances and pollute the groundwater easily (Assaf and Saadeh 2009, Sajil Kumar et al.2014).

Pollution of water resources by nitrate occurs due to industrial wastewater containing nitrate, domestic wastewater, fertilizers in agricultural, discharges from animal operations, wastewater treatment facilities, septic systems and commercial activities (Majlesi etal, 2016). Other sources include, atmospheric deposition and spreading of sewage sludge to land and seepage from landfills (Wakida and Lerner, 2005, E. Pastén-Zapata et al.2014).

The main factors that affect the potential for nitrate contamination of groundwater include land use practices, well depth, and soil type. Nitrate concentrations in groundwater can change over months and years due to changes in land use such as increased agricultural activities, deforestation, and installation of septic systems (Selecky et al, 2005). Groundwater concentrations exceeding an arbitrary threshold of 3 mg/l may be indicative of contamination of natural groundwater as a result of human activities (Burkart and Kolpin, 1993, E. Pastén-Zapata et al.2014).

A variety of analytical techniques and sensory methods have been employed to detect and identify the source of nitrate contamination. Techniques like voltammetry, Spectroscopy, Ion selective electrodes etc. are used extensively in the water quality assessment (Breijo, Sanchez, Civera, Ferrando, & Prats-Boluda, 2002; Buehler, Kounaves, Martin, West, Kuhlman, 2001, & Kumar Gaurav et al.2015).

Both nitrate and nitrite are significant public health concerns since they can cause methemoglobinemia or “blue-baby syndrome.” Nitrite interferes with the ability of infant hemoglobin to carry oxygen. Left untreated, this condition may lead to brain damage and death (Fan and Steinberg, 1996, Selecky et al, 2005). Excess levels of nitrate effects on health by forming hypertension, thyroid disability and carcinogenicity hazard of nitrosamine (Majlesi et al.2016), also can cause gastric cancer (Mason, 2002), meningitis, Parkinson’s disease etc. (Moorcroft, Davis, Compton, 2001 &Kumar Gaurav  et al.2015). Studies on animals in the laboratory have not indicated that nitrate or nitrite is directly carcinogenic, but it may react in the stomach with food containing secondary amines to produce N-nitroso compounds (NOC) which are known to be carcinogenic in animals (LWRRDC 1999, Ward et al. 2005, and Sajil Kumar et al.2014).

Elevated concentrations of nitrate in groundwater represent environmental health risks,  nitrate export into adjacent surface water bodies may induce an increased level of nutrients (eutrophication) affecting adversely biodiversity, mammals, birds, and fish population by producing toxins and reducing oxygen levels (Environmental Agency, EA, 2005) and can cause poisoning in animals (Stadler, 2012) . Besides, denitrification processes contribute to the emission of greenhouse gases due to production of N2O (Haag and Kaupenjohann, 2001, E. Pastén-Zapata et al.2014).

Nitrate is a stable and highly soluble ion with a low potential for precipitation or adsorption. These properties make it difficult to remove from water using conventional processes such as filtration or activated carbon adsorption. As a result, more complex treatment processes must be considered. These treatment processes– ion exchange, reverse osmosis, electrodialysis, and biological denitrification (Selecky  et al, 2005), catalytic denitrification, hybrid systems based on fly ash adsorption, membrane filtration, and electrocoagulation (Majlesi et al. 2016).

Chemical denitrification can be accomplished with reduction of nitrate by metals. Various metals have been investigated for use in nitrate reduction including aluminum and iron (both Feo and Fe2+).The advantage of chemical denitrification over the removal technologies is that nitrate is converted to other nitrogen species rather than simply displaced to a concentrated waste stream that requires disposal. Problems with chemical denitrification of potable water are the reduction of nitrate beyond nitrogen gas to ammonia, partial denitrification, and insufficient nitrate removal (nitrite can be converted to nitrate with the use of chlorine in disinfection). No full-scale chemical denitrification systems have been installed in the United States for the removal of nitrate in potable water treatment. A significant body of research has explored the use of zero valent iron (ZVI) in denitrification. Several patented granular media options are also emerging, including SMI-III® (Sulfur Modified Iron), MicroNose™ Technology, and Cleanit®-LC.( Darby etal,2012).

The hydrogenation via catalytic method is one of the promising techniques for removal of nitrate from water. It needs very active catalysts because the reaction is performed preferably at an ambient/low temperature, the reaction scheme shows that nitrate is reduced to the desired products involving NO2 -, NO, N2O and N2. The undesired byproduct NH4 is also formed by a side reaction due to over hydrogenation (Sharma& Bhattacharya, 2016).

The aim of this research is to investigate the potential of removing nitrate from drinking water using sodium thiosulfate and its impact on human health.

  1. Methodology:-

1.09% solution of sodium thiosulfate was prepared by dissolving pills (taken from Hach vials) in 100 ml of deionized water. Different doses of sodium thiosulfate solution (0.1, 0.3, 0.5,1,2,3, and 5ml) were added to 100 ml of water to be treated to determine the lowest dose that give high percentage of nitrate removal. The lowest contact time was determined by adding the lowest dose that gives high percentage of nitrate removal. Nitrate level was determined by cadmium reduction method (Hach method no. 8039) using nitraVer 5 high range powder pillow nitrate reagent. The effect of adding sodium thiosulfate on the level of TDS, alkalinity, sulphate and total hardness was studied after one hour contact time. TDS was determined by Hach CO 150 conductivity meter. Alkalinity was determined by Hach method no. 8203(phenolphthalein and total method). Sulfate was determined by Hach method no. 8051. Total hardness was determined by Hach test kit 20-400 mg/l Model 5-EPMG-L Cat. No.1454-01. Literature was reviewed to determine the effect of sodium thiosulfate on human health.

  1. Results & Discussion:-

Sodium thiosulphate (Na2S2O3, STS) is an industrial compound which is typically available as the pentahydrate, Na2S2O3.5H2O. It has medical uses in the treatment of some rare medical conditions. These include calciphylaxis in hemodialysis patients with end-stage kidney disease as well as cyanide poisoning. It also has functions as a preservative in table salt (less than 0.1 %) and alcoholic beverages (less than 0.0005 %)( Lee et al 2016).

Table 1 shows the effect of adding different doses of sodium thiosulfate on different parameters of raw water. You can notice that there is increase in the level of electrical conductivity and total dissolved substances by increasing the dose of 1.09% solution of sodium thiosulfate, but there is decrease in the level of nitrate.

Table 1 The effect of adding different doses of sodium thiosulfate on different parameters of raw water.

Sodium Thiosulfate dose

0 0.1 0.3 0.5 1 2 3 5

Nitrate

41.5 41 31 20.5 11.5 10 2.2 1.5

pH

7.18 8.04 8.00 7.99 7.94 8.08 7.76 7.85
Turbidity 0.33 0.17 0.21 0.26 0.27 0.23 0.17

0.34

EC 925 931 954 989 1056 1209 1346

1611

TDS 427 437 448 465 497 572 639

767

Table 2 shows the percentage of reduction in nitrate level and percentage increase in EC and TDS level at different doses of 1.09 % of sodium thiosulfate solution. 72% reduction in nitrate level was noticed when 1 ml of 1.09% solution of sodium thiosulfate while the level of EC and TDS still in the acceptable level  in drinking water. The lowest dose of sodium thiosulfate that gives high percentage of nitrate removal (72%) and lower increase in TDS (16%, the level of TDS still below 500 mg/l) was 1 ml of 1.09% solution (table 2).

Table 2 The percentage of reduction in nitrate level and percentage increase in EC and TDS level at different doses of 1.09 % of sodium thiosulfate solution.

Sodium Thiosulfate dose

0.1 0.3 0.5 1 2 3 5

% Reduction in nitrate concentration

1% 25% 51% 72% 76% 95% 96%
% increase in EC 0.6% 3% 7% 14% 31% 45%

74%

% increase in TDS 2% 9% 9% 16% 34% 50%

80%

Table 3 shows the effect of contact time on the percentage of removal of nitrate by sodium thiosulfate. More than two third of nitrate level was removed after 30 minutes of contact time between sodium thiosulfate and raw water.

Table 3 The effect of contact time on the percentage of removal of nitrate by sodium thiosulfate.

Time

% of nitrate removal

10 minutes

56%
30 minutes

69%

60 minutes

94%

Table 4 shows the effect of 1 ml of 1.09% solution of sodium thiosulfate addition to raw water on the level of total hardness, alkalinity, and sulfate after one hour of contact time.

Table 4 The effect of 1 ml of 1.09% solution of sodium thiosulfate addition on different parameters of raw water.

Test

Before addition After addition

Total Hardness

490 500
Sulfate 53

56

Alkalinity 259

235

3.1 sodium thiosulfate health effect:

Sodium thiosulfate (STS) is an industrial chemical which has also been approved for the treatment of certain rare medical conditions. These include cyanide poisoning and calciphylaxis in hemodialysis patients with end-stage kidney disease (Lee et al. 2016).

Sodium thiosulfate  used as therapeutic drug for treatment of cyanide poisoning at a dose of 1ml/hr/kg of 10% solution at a total dose of 12g (Zakharov  et al 2015), treatment of nephrogenic  systemic fibrosis (Yerram et al,2007) at a dose of 12.5 g three times a week for three months .

Concurrent injections of sodium thiosulfate intraperitoneally or intravenously at a dose of 400 mg/kg once weekly for 3 consecutive weeks prevented the hypomagnesemic and the nephrotoxic effects of cisplatin and can be of clinical significance( Wong et al, 1988).

Compared with saline control solution, sodium thiosulfate alone also inhibited tumor growth significantly (p < .005)( Viallet et al 2005).

The development of embryos exposed to 0.1~1 mol/L STS was severely retarded and was accompanied by malformation of multiple organs; embryos exposed to 10 micromol/L~10 mmol/L STS had circulatory, nervous and maxillofacial malformations (Hu et al, 2009). Pioneering studies suggest that chemicals can have in many cases very similar toxicological and teratological effects in zebrafish embryos and humans (Yang et al 2009).

3.2 Sodium Nitrate health effect:

Larsen et al.  tested for the first time in a double-blind crossover study the effects of sodium nitrate on blood pressure(BP) in healthy volunteers and reported a significant reduction in diastolic BP (23.7 mm Hg), The BP-lowering effects of inorganic nitrate may derive from increased generation of nitric oxide (NO) , a pleiotropic molecule involved in the vasodilation of large arteries and resistance vessels, The endothelial isoform of the NO synthase uses arginine and molecular oxygen as precursors to tonically release NO in the endothelium, which is important for the control of vascular tone, smooth muscle growth, platelet aggregation, and inflammation . Reduced NO bioavailability has been associated with impairment of endothelial function and increased risk of hypertension and cardiovascular diseases (Mario Siervo et al, 2013).

Numerous studies now show that administration of nitrate or nitrite has NO-like bioactivity in animals and humans including a reduction of blood pressure, protection against ischemia–reperfusion injury, and modulation of mitochondrial function. Nitrate supplementation, either as a sodium salt(NaNO3) or as a natural resource (e.g. beetroot juice), reduces the oxygen cost of exercise (Larsen et al. 2007,2010, 2011; Bailey et al. 2009, 2010; Vanhatalo et al. 2010;Lansley et al. 2011b; Cemak et al. 2012), and enhances exercise p performance (Bailey et al. 2010; Lansley et al.2011a; Cemak et al. 2012)( Her n´andez etal 2012).

Conclusions:

Removal of nitrate from drinking water by adding 1.09 % of sodium thiosulfate is easy, cost effective method and remove high percentage of nitrate.

Further research is needed to confirm that addition of sodium thiosulfate to drinking water is safe process.

Further studies are needed to know the chemical compounds produced from reaction between sodium thiosulfate and nitrate.

By

Adel Alsalaymeh,

Water Quality Laboratory, Hebron Municipality, Hebron – Palestine.

References:

  • Kumar Gaurava, Pooja Devib, BabanKumar S. Bansodb, Study of Effect of Interferent in the Determination of Nitrate in Water, Aquatic Procedia 4 ( 2015 ) 1094 – 1098.
  • Mary Selecky, Janice Adair & Denise Clifford, Nitrate Treatment Alternatives for Small Water Systems,
  • Jensen, V.B., Darby, J.L., Seidel, C. & Gorman, C. (2012) Drinking Water Treatment for Nitrate. Technical Report 6 in: Addressing Nitrate in California’s Drinking Water with a Focus on Tulare Lake Basin and Salinas Valley Groundwater. Report for the State Water Resources Control Board Report to the Legislature. Center for Watershed Sciences, University of California, Davis.
  • Monireh Majlesi , Seyed Mohsen Mohseny , Mahdieh Sardar , Sohrab Golmohammadi , Amir Sheikhmohammadi , Improvement of aqueous nitrate removal by using continuous electrocoagulation/electroflotation unit with vertical monopolar electrodes, Sustainable Environment Research 26 (2016) 287-290.
  • Ernesto Pastén-Zapata , Rogelio Ledesma-Ruiz , Thomas Harter , Aldo I. Ramírez , Jürgen Mahlknecht , Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach, Science of the Total Environment 470–471 (2014) 855–864.
  • Sharma, A. Bhattacharya(2016), Drinking water contamination and treatment techniques, Appl Water Sci, DOI 10.1007/s13201-016-0455-7.
  • J. Sajil Kumar, P. Jegathambal , E. J. James, Chemometric evaluation of nitrate contamination in the groundwater of a hard rock area in Dharapuram, south India, Appl Water Sci (2014) 4:397–405, DOI 10.1007/s13201-014-0155-0.
  • Mario Siervo,* Jose Lara, Ikponmwonsa Ogbonmwan, and John C. Mathers(2013), Inorganic Nitrate and Beetroot Juice Supplementation Reduces Blood Pressure in Adults: A Systematic Review and Meta-Analysis, The Journal of Nutrition Nutrition and Disease, doi:10.3945/jn.112.170233.
  • Andr´es Her n´andez, Tomas A. Schiffer, Niklas Ivarsson, Arthur J. Cheng, Joseph D. Bruton,Jon O. Lundberg, Eddie Weitzberg and H˚akan Westerblad, Dietary nitrate increases tetanic [Ca2+]I and contractile force in mouse fast-twitch muscle, J Physiol 590.15 (2012) pp 3575–3583.
  • Viallet NR1, Blakley BW, Begleiter A, Leith MK (2005), Effect of sodium thiosulphate and cis-diamminedichloroplatinum on FADU tumor cells in nude mice, J Otolaryngol. 2005 Dec;34(6):371-3.
  • Moonhee Lee, Edith G. McGeer and Patrick L. McGeer, Sodium thiosulfate attenuates glialmediated neuroinflammation in degenerative neurological diseases, Journal of Neuroinflammation (2016) 13:32.
  • Hu W, Cheng L, Xia H, Sun D, Li D, Li P, Song Y, Ma X., Teratogenic effects of sodium thiosulfate on developing zebrafish embryos, Front Biosci (Landmark Ed). 2009 Jan 1;14:3680-7.
  • Sergey Zakharov, Manuela Vaneckova, Zdenek Seidl, Pavel Diblik, Pavel Kuthan, Pavel Urban, Tomas Navratil andDaniela Pelclova, Successful Use of Hydroxocobalam in and Sodium Thiosulfate inAcute Cyanide Poisoning: A Case Report with Follow-up, Basic & Clinical Pharmacology & Toxicology, 2015, 117, 209–212.
  • Wong NL1, Mavichak V, Magil AB, Sutton RA, Dirks JH. ,Sodium thiosulfate prevents cisplatin-induced hypomagnesemia, 1988;50(4):308-14.
  • Yang L, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Müller F, Strähle U., Zebrafish embryos as models for embryotoxic and teratological effects of chemicals, Reprod Toxicol. 2009 Sep;28(2):245-53. doi: 10.1016/j.reprotox.2009.04.013. Epub 2009 May 4.