تطهير المياه بالاشعة فوق البنفسجية

مقدمة

التطهير هو التدمير والقتل النوعي المنتخب للكائنات المسببة للامراض , مما يعني ليس كل الكائنات الحية  تموت وتدمر خلال هذه العملية , بينما يعرف التعقيم بانه قتل وتدمير لكل الكائنات الحية الدقيقة  الموجودة الممرضة وغير الممرضة .

لا تسمح عملية ترويب المواد العالقة مع عمليات الترسيب والترشيح اللاحقة، وكذلك عملية الكلورة المسبقة للمياه بالحصول على إزالة كاملة للبكتريا الضارة، حيث تحافظ حتى 10% من البكتريا والفيروسات على حياتها بعد العمليات السابقة. وكذلك لا تسمح عمليات المعالجة المختلفة لمياه الصرف الصحي بالقضاء نهائياً على الأحياء الممرضة في هذه المياه. لذلك تعتبر عملية التطهير هي العملية النهائية اللازمة لتحضير مياه الشرب وكذلك لمعالجة مياه الصرف الصحي قبل طرحها إلى المجتمعات المائية الطبيعية أو استخدامها للأغراض المختلفة.

في مجال معالجة المياه والمخلفات السائلة فهناك ثلاث مجموعات رئيسية مسببة للمرض مصدرها داخل الحيوان والانسان  ((Human enteric Organisms  وهي  البكتريا والفيروسات والطفيليات الاميبية

والمواد المستخدمة في التطهير وهي ما تعرف بالمطهرات لابد ان تكون – امنة في النقل والتداول والتطبيق –  وتركيزها في المياه المعالجة يمكن قياسه وتقديره  والا تكون هي مصدرا لتلوث البيئة .

ولمعرفة أهمية التطهير لابد من معرفة أهم الكائنات الدقيقة الممرضة  التي تتواجد في مياه الصرف المعالجة والامراض التي تسببها للانسان والحيوان.

خصائص المواد المستخدمة في التطهير

لكي تتم عملية التطهير بنجاح لابد ان تتوفر في المواد المطهرة خصائص معينة  وأهم الخصائص المطلوب توافرها الاتية :

  1. السمية للكائنات الدقيقة الممرضة فلابد ان يكون شديد السمية عند التركيزات الضعيفة , بحيث ان كميات او تركيزات قليلة من المادة المطهرة تكفي للقضاء علي الكائنات الدقيقة الممرضة الموجودة في المكان المراد تطهيره .
  2. الذوبانية لابد ان يذوب في المياه أو في انسجة خلايا الكائنات الممرضة.
  3. الثبات فقدان قدرته علي الابادة مع الوقت قليل , اي تستمر قدرته التطهيرية مدة مناسبة تكفي للقضاء علي الممرضات المطلوب التخلص منها .
  4. غير سام للكائنات العليا لابد ان يكون ساما للكائنات الدقيقة وغير سام للكائنات العليا فمثلا عند تطهير ماء الشرب لابد ان تكون مادة التطهير غير سامة للانسان الذي سوف يشرب ذلك الماء .
  5. التجانس اذا كانت المادة المطهرة سوف تستخدم في صورة سائلة فلابد ان يكون المحلول المطهر متجانسا.
  6. التفاعل مع المواد الجانبية لابد ان لا يمتص من المواد العضوية دون الخلايا البكتيرية أو الفيروسية .
  7. السمية عند درجة الحرارة المطلوبة لابد ان يكون فعالا عند درجة لحرارة المناسبة
  8. القدرة علي الاختراق له القدرة علي اختراق سطح المياه وله القدرة الي الوصول بسهوله  للهدف المراد تطهيره.

تطهير مصادر المياه

تطهير مصادر المياه المستخدمة لاغراض الشرب والاستعمال اليومي من اهم الوسائل التطبيقية لمكافحة التلوث البيولوجي للمياه وخاصة التلوث بالكائنات الحية الدقيقة الممرضة .كما ان التطهير من الوسائل الفعالة لمنع انتشار الاوبئة والامراض المنتقلة بالماء .فاستخدام العوامل المطهرة من شانه ان يحد من نمو وتكاثر الكائنات الممرضة داخل البيئة المائية التي تتمثل في مياه المسطحات المائية المختلفة وخاصة التي تعد موردا لمياه الشرب أو التي تعد مصبا نهائيا لمياه الصرف المعالجة والمطهرة جيدا . وعملية القضاء علي الكائنات الممرضة التي توجد في الماء الملوث هو الهدف من عملية التطهير بالاضافة الي توفير الظروف المناسبة لعدم نمو اية ميكروبات داخل مياه الشرب أو اية مياه يستخدمها الانسان من اولويات مكافحة التلوث البيولوجي للماء  .

التطهير بالاشعة فوق البنفسجية

الأشعة فوق البنفسجية هي جزء من الطيف الكهرومغناطيسي. وتتميز بأطوال موجات أقصر من موجات الضوء المرئي ولكن أطول من الأشعة السينية , توجد هذه الأشعة في ضوء الشمس وطول موجتها تتراوح ما بين 100-400 نانومتر تصل إلى سطح الأرض أقصرمن ذلك لترشيحها وامتصاصها في طبقة الأوزون في الأجزاء الخارجية من الغلاف الجوي . والضوء فوق البنفسجي الواصل إلى سطح الأرض ذات تأثير قاتل للبكتيريا ولذلك فإن ضوء الشمس يلعب دوراً مهماً في القضاء على الميكروبات في البيئة ، وعلى كل فإن الأمواج الأقصــــر في الطيف فوق البنفسجي أكثر فاعلية في قتل العناصر البكتيرية . والجزء الأكثر فاعلية في الطيف هو الذي يقع بين 200-300 وأكثره أيضاً هو 250-265 نانومتر.

إن التطهير الفوق بنفسجي للمياه هو عبارة عن عملية طبيعية تماما وخالية من المواد الكيميائية.

يتراوح طول موجات الشعاع فوق البنفسجي ضمن نطاق 240 حتى 280 نانومترا، حيث يقوم بمهاجمة الحمض النووي الحيويDNA ,RNA  لجميع الكائنات الممرضة كالبكتريا والفيروسات والطفيليات بشكل مباشر. يبدأ الإشعاع برد فعل كيميائي ضوئي يؤدي إلى تدمير المعلومات الجينية الموجودة في الحمض النووي ويمنع تضاعفه , فتعمل الاشعة علي احداث تغيير في الحمض النووي للبكتيريا خاصة في القواعد النتروجينية  في عملية تسمي Thymine dimerization. . حيث تفقد البكتيريا قدرتها على التكاثر وتتلف وتموت . حتى أن الطفيليات مثل Cryptosporidium أو  Giardia، المقاومة بشكل عنيف للمطهرات الكيميائية، تقل بشكل فاعل نتيجة التعرض لهذا  الإشعاع.

 

كيفية اتلاف الاشعة فوق البنفسجية للحمض النووي

تتداخل الاشعة في عملية تضاعف الحمض النووي  حيث تؤثر في عملية ترتيب القواعد النتروجينية فتغير من هذا الترتيب فلا يحدث تضاعف للحمض النووي بصورة صحيحة وتموت الخلية . اثناء نسخ الحمض  النووي تقوم الاشعة باحداث تلف كيموضوئي  وئتكوين روابط جديدة  (ثنائية)بين النيوكليتيدات المتجاورة مكونة جزيئات مزدوجة أو بوليمرات ثنائية الربط بين النيوكليتيدات المتجاورة خاصة الثايمين , ويؤدي تكون الكثير من البوليمرات الثنائية للثايمين في الحمض النووي للبكتريا أو الفيروسات الي منع تضاعف الخلايا ويؤدي لموتها.

كما يمكن استخدام الأشعة فوق البنفسجية لإزالة الكلور وأنواع الكلورامينات من المياه، حيث تسمى هذه العملية بالتحليل الضوئي وتتطلب جرعة أعلى من التطهير العادي. إن الكائنات المجهرية التي تم تطهيرها لا يتم إزالتها من المياه، فتطهير الأشعة فوق البنفسجية لا يزيل العضويات المتحللة أو المركبات اللاعضوية أو الجزيئات في المياه. ومع ذلك، فيمكن استخدام عمليات ألاكسدة بالأشعة فوق البنفسجية للتطهير عن طريق الأثر الكيميائي وفي الوقت ذاته تؤمن مستوى عال من التطهير.

 

المراجع

  • التلوث البيولوجي للبيئة المائية , احمد احمد السروي , مكتبة الدار العلمية – القاهرة 2010.
  • الملوثات المائية (المصدر – التأثير- التحكم والعلاج) , احمد السروي , دار الكتب العلمية 2008.
  •   HARM, W., 1980, Biological Effects of Ultraviolet Radiation, International Union of Pure and Applied Biophysics, Biophysics series, Cambridge University

بقلم

أحمد أحمد السروي

استشاري جودة المختبرات والدراسات البيئية

البريد الاليكتروني    aelserwy71@yahoo.com

 

الوسائل الفيزيائية لتطهير مياه الشرب

1.مقدمة

التطهير Disinfection هو التدمير والقتل النوعي المنتخب أو وقف نشاط للكائنات المسببة للامراض , مما يعني ليس كل الكائنات الحية  تموت وتدمر خلال هذه العملية , بينما يعرف التعقيم  Sterilization  بانه قتل وتدمير لكل الكائنات الحية الدقيقة  الموجودة الممرضة وغير الممرضة اي القضاء الكامل على جميع الكائنات الحية فى المياه.

لا تسمح عملية ترويب المواد العالقة مع عمليات الترسيب والترشيح اللاحقة، وكذلك عملية الكلورة المسبقة للمياه بالحصول على إزالة كاملة للبكتريا الضارة، حيث تحافظ حتى 10% من البكتريا والفيروسات على حياتها بعد العمليات السابقة. وكذلك لا تسمح عمليات المعالجة المختلفة لمياه الصرف الصحي بالقضاء نهائياً على الأحياء الممرضة في هذه المياه. لذلك تعتبر عملية التطهير هي العملية النهائية اللازمة لتحضير مياه الشرب وكذلك لمعالجة مياه الصرف الصحي قبل طرحها إلى المجتمعات المائية الطبيعية أو استخدامها للأغراض المختلفة.

في مجال معالجة المياه والمخلفات السائلة فهناك ثلاث مجموعات رئيسية مسببة للمرض مصدرها داخل الحيوان والانسان  ((Human enteric Organisms  وهي  البكتريا والفيروسات والطفيليات الاميبية .

والمواد المستخدمة في التطهير وهي ما تعرف بالمطهرات لابد ان تكون – امنة في النقل والتداول والتطبيق –  وتركيزها في المياه المعالجة يمكن قياسه وتقديره  والا تكون هي مصدرا لتلوث البيئة .

ولمعرفة أهمية التطهير لابد من معرفة أهم الكائنات الدقيقة الممرضة  التي تتواجد في مياه الصرف المعالجة والامراض التي تسببها للانسان والحيوان.

2.تطهير مصادر المياه

تطهير مصادر المياه المستخدمة لاغراض الشرب والاستعمال اليومي من اهم الوسائل التطبيقية لمكافحة التلوث البيولوجي للمياه وخاصة التلوث بالكائنات الحية الدقيقة الممرضة .كما ان التطهير من الوسائل الفعالة لمنع انتشار الاوبئة والامراض المنتقلة بالماء .فاستخدام العوامل المطهرة من شانه ان يحد من نمو وتكاثر الكائنات الممرضة داخل البيئة المائية التي تتمثل في مياه المسطحات المائية المختلفة وخاصة التي تعد موردا لمياه الشرب أو التي تعد مصبا نهائيا لمياه الصرف المعالجة والمطهرة جيدا . وعملية القضاء علي الكائنات الممرضة التي توجد في الماء الملوث هو الهدف من عملية التطهير بالاضافة الي توفير الظروف المناسبة لعدم نمو اية ميكروبات داخل مياه الشرب أو اية مياه يستخدمها الانسان من اولويات مكافحة التلوث البيولوجي للماء  .

3.طرق ووسائل التطهير

توجد طرق كثيرة للتطهير تستخدم حسب نوع وطبيعة الظروف التى يجرى فيها التطهير والغرض منه، وهناك طرق عديدة للتطهير منها:

– الوسائل الفيزيائية مثل :

* التطهير بالحرارة

* التطهير بالأشعة فوق البنفسجية

– الطرق الكيميائية مثل:

* التطهير بالأوزون

* التطهير الكيميائى

4.الوسائل الفيزيائية لتطهير المياه

تعد الوسائل الفيزيائية من الوسائل الهامة لتطهير المياه كما انها تتميز بانها اكثر امانا من الوسائل الكيميائية , والوسائل الاتية هي اكثر الوسائل استخداما لتطهير المياه :

  • الحرارة .
  • الاشعة فوق البنفسجية .

أ-  التطهير باستخدام التسخين الحراري

من أهم العناصر الفيزيائية التي تستخدم في التطهير الحرارة والضوء ,

ونجد أن بعض البكتريا ومعظم الفيروسات والخميرة والفطريات تقتل عند درجة حرارة 60°م لمدة 10-20 دقيقة. وجراثيم الفطريات والخميرة ومعظم باقى أنواع البكتريا تتحطم destroyed عند درجة تتراوح بين 70-100 لمدة من 5-10 دقائق.  إلا أن جراثيم البكتريا من الصعب بمكان أن يتم تحطيمها وقتلها فعلى سبيل المال، نجد أن بعض منها يحتاج إلى عشرة دقائق على الأقل عند درجة حرارة 100-120°م.

ويبين الشكل التالي تأثير بعض العوامل المطهرة علي البروتين فكل من الحرارة وتغير الرقم الهيدروجيني للوسط الذي تكون فيه الخلية البكتيرية  والمعادن الثقيلة تعمل علي افساد البروتين وتغيير طبيعته بصورة ما , فمثلا الحرارة تعمل علي تغيير البروتين تغيرا كاملا وتغير شكله بدرجة كبيرة , بينما التغير في الرقم الهيدروجيني مع الحرارة يؤدي الي تغير شكل البروتين .

وعموما فتسخين الماء لدرجة الغليان يقضي علي معظم البكتريا الغير متحوصلة  الممرضة , فتجري عمليات تسخين المياه تحت الضغط لدرجة حرارة 120 مº أو أن يتم غلي لمياه لمدة 15 دقيقة ثم تبرد حتى درجة الحرارة 35مº وتترك لمدة ساعتين للسماح بالانتشار لأبواغ ليتم بعد ذلك التسخين من جديد للمياه حتى الغليان. رغم بساطة هذه الطرق إلا أن استخدامها بقي محدوداً جداً نظراً لعدم إمكانية اعتمادها كطريقة أساسية في تطهير احجام كبيرة من المياه. وعامة تستخدم الحرارة في مجال المشروبات والالبان وليس سهلا ان تستخدم في تطهير الكميات الكبيرة من مياه الشرب او مياه الصرف الصحي لان ذلك يكلف تكاليف باهظة وليست اقتصادية . ومع ذلك فبسترة وتعقيم الحمأة تتم في اوربا بصورة شائعة . وفي مجال مياه الشرب بدأت كل دول العالم تتجه نحو التسخين الحراري للمياه حتى درجة حرارة 75°م والتي ثبت أنها كافية لقتل الميكروبات كبديل عن استخدام الإضافات الكيميائية كالكلور الذي ثبت أيضا ضرره على صحة الإنسان.

 

ب- تطهير مياه الشرب ومياه الصرف المعالجة بالاشعة فوق البنفسجية

الأشعة فوق البنفسجية هي جزء من الطيف الكهرومغناطيسي. وتتميز بأطوال موجات أقصر من موجات الضوء المرئي ولكن أطول من الأشعة السينية , توجد هذه الأشعة في ضوء الشمس وطول موجتها تتراوح ما بين 100-400 نانومتر تصل إلى سطح الأرض أقصرمن ذلك لترشيحها وامتصاصها في طبقة الأوزون في الأجزاء الخارجية من الغلاف الجوي . والضوء فوق البنفسجي الواصل إلى سطح الأرض ذات تأثير قاتل للبكتيريا ولذلك فإن ضوء الشمس يلعب دوراً مهماً في القضاء على الميكروبات في البيئة ، وعلى كل فإن الأمواج الأقصــــر في الطيف فوق البنفسجي أكثر فاعلية في قتل العناصر البكتيرية . والجزء الأكثر فاعلية في الطيف هو الذي يقع بين 200-300 وأكثره أيضاً هو 250-265 نانومتر.

والاشعة فوق البنفسجية تستخدم في تطهير مياه الشرب والصرف الصحي لما لها من قابلية لاختراق المواد والخلايا محدثة تاثير كيميائي عن طريق احداث تأينا لمياه الخلايا مكونة جزيئات أكسجينية وهيدروجينية نشيطة تسبب موت , كما ان الاشعة فوق البنفسجية تحدث دمارا شديدا لشريط الحمض النووي DNA بتكوين روابط جديدة به الخلايا محدثة وقف لنمو  وتكاثر الخلايا الحية .

ويستخدم الضوء فوق البنفسجي، وهو جزء غير مرئي من الطيف، في تطهير مياه الشرب من الكائنات الدقيقة. ويمكن أن تحاكي مصابيح الزئبق أشعة الشمس وتقلد عملياتها للتنقية الطبيعية.

إن فاعلية أجهزة التطهير بالأشعة تعتمد على عدة أمور أهمها:

1-مواصفات الماء الداخل للجهاز.

2 – كثافة و شدة الأشعة فوق البنفسجية.

3 – زمن تعرض الماء للأشعة

وحدات الأشعة فوق البنفسجية لمعالجة المياه

تتألف وحدات الأشعة فوق البنفسجية لمعالجة المياه  من مصدر إشعاع بخاري زئبقي متخصص منخفض الضغط يقوم بإنتاج الإشعاع الفوق بنفسجي عند 254 نانو متر، أو من مصدر إشعاع فوق بنفسجي متوسط الضغط يولد ناتجا متعدد الألوان من 200 نانو متر إلى طاقة مرئية تحت الحمراء. إن الطول الموجي الأمثل للتطهير هو القريب من 260 نانو متر.

 

إن مصدر الإشعاع المتوسط الضغط فعال يما يقارب 12 بالمائة، بينما مصابيح الضغط المنخفض المملغمة يمكنها أن تكون فعالة بنسبة 40 بالمائة. هذا وإن المصابيح الفوق بنفسجية لا تلامس المياه على الإطلاق، فهي إما تقع في غطاء زجاجي داخل حجرة المياه أو تحمل خارجيا إلى المياه التي تتدفق من خلال أنبوب فوق بنفسجي شفاف. وبفضل أنها تحمل فإن المياه عندها يمكن أن تمر من خلال حجرة التدفق، والأشعة الفوق بنفسجية يتم تسلمها وامتصاصها في المجرى.

 

  هذا ويتأثر حجم نظام الأشعة فوق البنفسجية بثلاثة متغيرات وهي: معدل التدفق وقوة المصباح إضافة إلى نفاذية الضوء في المياه.

بقلم

أحمد أحمد السروي

إستشاري جودة المختبرات والدراسات البيئية

 المراجع العلمية

  • احمد احمد السروي ,التلوث البيولوجي للبيئة المائية , مكتبة الدار العلمية – القاهرة ,2010.
  • احمد احمد السروي , الملوثات المائية (المصدر – التأثير- التحكم والعلاج) ,  دار الكتب العلمية, 2008.
  •   HARM, W., 1980, Biological Effects of Ultraviolet Radiation, International Union of Pure and Applied Biophysics, Biophysics series, Cambridge University

Recent Development in Halogenation Technology in Water Disinfection

Introduction

                Disinfection is the selective destruction of pathogenic organisms; sterilization is the complete destruction of all microorganisms. Disinfection may be considered as one of the most important processes in water and wastewater treatment. This practice used in water and wastewater treatment has resulted in the virtual disappearance of waterborne diseases.

Disinfection may be accomplished through the use of chemical agents, physical agents, mechanical means, and radiation. In wastewater treatment, the most commonly used disinfectant is chlorine; however, other halogens, ozone, and ultraviolet radiation,and organic disinfectants have been used.

  1. Recent Environmental Concerns and Regulations

       Protection of public water supplies relies heavily on the use of disinfectants. Disinfectants are used to maintain a residual in the distribution system to prevent any health problems and to maintain the water quality standards. Since the new regulation requirements, the water industry has been looking for alternative chemicals or techniques to replace chlorine. In this section, instead of studying halogenation technology, we present techniques to reduce halogenation by-products. Different techniques include (a) chlorine dioxide, (b) chloramines, (c) coagulant, (d) ozonation, (e) organic disinfectants, and (f) ultraviolet light [1–2,3–4,5–6]. To comply with the upcoming stringent law, the techniques were tested by different plants. In the past, we have used chlorine to disinfect the finished drinking water, but then it may produce trihalomethanes (THMs) and other products. These can be potential carcinogens. This includes most of the halogens, especially the chlorine [7].

           Chlorine is a major halogen used in water treatment for controlling microbial quality. Marhaba [8].described the US Environmental Protection Agency (US EPA) initiated and negotiated the rule-making process for the Disinfectant/Disinfections By Products (D/DBPs) Rule in 1992. Owing to the complexity of the problems, US EPAhad to draw on the expertise of others to prepare the rule. The regulation was proposed in two steps.

           Stage 1 of the D/DBPs Rule was proposed in 1994 and became effective in December 1998. It lowered the total THM (TTHM) maximum contaminant level (MCL) from 0.100 to 0.0800 mg/L and three other classes of DBPs. The rule also set maximum residual disinfectant levels (MRDL) for three disinfectants. To provide necessary data for stage 2 of the D/DBP regulations, the Information Collection Rule (ICR) (begun July 1, 1997, ended December 1998) was proposed in 1994 with stage 1 of the D/DBP Rule. Stage 2 was re-proposed in 2000 and required even lower MCLs for DBPs than those proposed in stage 1. The 1996 Amendments to the Safe Drinking Water Act (SDWA) require US EPAto promulgate the stage 2 Rule by May 2002. Stage 1, proposed in 1994 and promulgated in 1999, provided maximum contaminant levels (MCLs) for the sum of five haloacetic acids (HAAs) at 0.6 mg/L, BrO3 at 0.010 mg/L, and brominates trihalomethane (THMs) at 0.08 mg/L. Stage 2 MCLs of 0.040 mg/L for TTHMs and 0.020 mg/L for HAAs were proposed. Table 1 gives a summary of the proposals according to the affected parameters.

 

Table 1 Proposed Disinfectant Level on Disinfectant Residuals and DBPs

Parameter Effective Stage 1 (mg/L) Anticipated Stage 2 (mg/L)
MRDL for chlorine 4.0 4.0
MRDL for chloramines 4.0 4.0
MRDL for chlorine dioxide 0.8 0.8
MCL for TTHM 0.08 0.04
MCL for five haloacetic acids (HAAs) 0.06 0.02
MCL for bromate ion 0.01  
MCL for chlorite ion 1.0  
  1. Chlorine Dioxide

Chlorine dioxide is widely used as an alternative to chlorine for treating drinking water . Numerous chlorine dioxide generation technologies have recently been developed to improve the conversion efficiency and purity of chlorine dioxide [9]. Water utilities use chlorine dioxide for peroxidation, control of taste and odor problems, and inactivation of common pathogens. Because chlorine dioxide is an oxidizing agent that does not chlorinate, it is often used for lower THM concentrations in finished water to meet levels established by the US EPA.

  1. Chloramines

Owing to the D/DBP rule, many water utilities may be switching from chlorine to alternative disinfectants. Chloramines have become the disinfectant of choice to replace free chlorine in distribution systems because they produce fewer DBPs while controlling the re-growth of bacteria. Controlling nitrification is essential if chloramines are to be a viable alternative disinfectant scheme for distribution systems in all types of environments.

El-Shafy and Grunwald [10].  studied the formation of THMs and its species from the reaction of chlorine with humic acid substances. This has caused much attention because of their carcinogenic and dangerous health effects. They found residual chlorine in water entering the distribution pipelines was on average 0.75 mg/L and decreased with distance until it reaches zero. The low velocity and large volume of reservoirs increased the residence time and correspondingly provided conditions for more chlorine decay and accordingly an increase in THM formation. The residence time and decay of chlorine were used as good predictors for the formation of THM and Chloroform in this study.

  1. Coagulant

The evaluation of 16 sites, with optimized coagulation provide an assessment of the technique and illustrate its capabilities to meet the requirements of Disinfectants/Disinfections by-product rule (D/DBP), were done by Bell-Ajy et al. [11]  .

Jar tests were used to determine the effectiveness of optimized coagulation for the removal of organic carbon, DBP precursors, particles, and turbidity when supernatant results were compared with conventional treatment. Jar-test results indicated that optimized coagulation could enhance the removal of organic carbon and DBP precursors.

 

  1. Ozone

Ozonation is one of the alternative techniques to replace traditional chlorine . Although the use of ozone will not produce chlorinated THM, haloacetic acids or other chlorinated by products, it will react with nature organic material. Ozone and its primary reactive product, the hydroxyl free radial (OH−), are strong oxidizers.

The oxidation by-products typically include aldehydes, aldo and keto acids, carboxylic acids, and peroxide. Grosvener [12]  presented a paper providing a detailed summary of ozonation and by-product formation chemistry, effective approaches toward the control of by-product formation, and DBP precursor removal technologies. Natural organic materials (NOM), a major component of total organic materials, is a complex matrix of total organic chemicals that can be derived from partial bacterial degradation of soil, living organisms, and plant detritus.

  1. Organic Disinfectants

Wang [13] has studied the use of various organic disinfectants for water purification, swimming pool water disinfection, and sludge disinfection. The major advantage of using organic disinfectants is that organic disinfectant will not be consumed easily by the target influent water, wastewater, or sludge containing organics.

  1. Ultraviolet (UV)

Hartz [14] described the pilot study at Midway Sewer District, located south of Seattle, WA. Owing to new regulation requirements, the district commissioned an investigation of alternative methods of disinfection, a pilot study to determine the effectiveness of ultraviolet irradiation. The UV process involved subjecting the wastewater to light energy in which lamps are tuned to emit certain light frequencies . In the case of UV used for microorganism inactivation, the lamps are tuned to a specific emission wavelength, for low-pressure lamps, the frequency most effective for inactivation around 250 nm. A number of variables regarding the effectiveness of the UV systems included: (a) light intensity, (b) residence time, and (c) effluent requirements. The results were that the percentage of light transmission for this pilot trial was slightly lower than normal. It was indicated that trickling filter tended to produce a wastewater that has a lower percentage light transmission. Then, owing to the solid content contact unit following the trickling filter system, the residual turbidity is lowered and the light transmittance is slightly increased. The UV light transmission was about 62% for an unfiltered sample of the wastewater. Filtration of the wastewater sample improved the light transmission by 5%. The district has found this technique as a possible alternative.

 

By

Ahmed Ahmed Elserwy

Water & Environmental Consultant

Ain Shames University, Faculty of Science

 

 

References

[1]. T. Governor, Water Engineering Management, February, 30–33 (1999).

[2].. W. Sung, B. Reilley-Matthews, D. K. O’Day, and K. Horrigan, JAWWA, 92, 53–63 (2000).

[3].. L. K. Wang, J. New England Water Works Association, 89, 250–270 (1975).

[4].. L. K. Wang, Water and Sewage Works, 125, 99–104, (1978).

[5].. L. K. Wang, Y. T. Hung and N. K. Shammas (eds.), Physicochemical Treatment Processes.

Humana Press, Totawa, NJ. 2004.

[6].. L. K. Wang, N. K. Shammas and Y. T. Hung (eds.), Advanced Physicochemical Treatment

Processes. Humana Press, Totawa, NJ. 2005

[7]. M. Krofta and L. K. Wang, Removal of Trihalomethane Precursors and Coliform Bacteria by Lenox Flotation-Filtration Plant, Water Quality and Public Health Conference, US Department of Commerce, National Technical Information Service, Springfield, VA, Technical Report PB83-244053, 1983, pp. 17–29.

[8]. T. F. Marhaba, Water Engineering Management, January, 30–34 (2000).

[9]  G. Gorden, JAWWA 91, 163–174 (1999).

[10]  M. A. El-Shafy and A. Grunwald, Water Research 34, 3453–3459 (2000).

[11]  K. Bell-Ajy, E. Mortezn, D. V. Ibrahim, and M. Lechevallier, JAWWA, 92, 44–53 (2000).

[12]  T. Grosvenor, Water Engineering Management, 30–39 (1999).

[13]  L. K. Wang, J. New England Water Works Association, 89, 250–270 (1975).

[14] K. Hartz, Water Engineering Management, August, 21–23 (1999).